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Abstract

Text data modeling has been usually considered with

Bernoulli or multinomial event models. Poisson dis-

tribution is considered inefficient for text information

retrieval. In this work, we propose to incorporate the

Zero Inflated Poisson model in the Generative Topo-

graphic Mapping algorithm. The modified algorithm is

presented as a text document cluster extraction and vi-

sualization tool. Experimental results are presented for

the Medlars, CISI and Cranfield collections, observing

notable class separation.

1 Introduction

Data visualization is aimed at obtaining a graphic
representation of high dimensional information.
One particular technique used to represent data is
the latent variable model. In this model, we would
like to obtain a representation of the data distri-
bution in a lower-dimensional space, usually two-
dimensional. The latent variable model is also em-
ployed for the identification of clusters and outliers
on data. Most of the information obtained with the
latent class models can not be obtained using just
a dimension reduction method as principal compo-
nent analysis (PCA). From the several tools pro-
posed for data visualization, the Generative Topo-
graphic Mapping (GTM) [1] has gained importance
because of its topographic organization capacity.
In the GTM model, the data are assumed a noisy
version of a high-dimensional variable related via
a non-linear function to the latent variables. Con-
sidering the Gaussian distribution for the noise, a
continuous model was obtained. The GTM model
has been also considered for binary data modeled
with a multi-dimensional Bernoulli distribution [2].
Kaban and Girolami [3] adapted GTM to the ex-
ponential distribution family. Some application to
cluster visualization with GTM has also been re-
ported at [1], [4] and [5]. The performance of orig-
inal GTM decreases when the data dimensionality
is too high, such as in text documents. In the bag
of words representation, the documents are consid-
ered as elements of a vector space. Each element

of the vector represents the word frequency count
in the document. When a word do no exist in the
document the frequency term is zero. Usually in
the matrix representing a document collection may
exist many terms with a zero. Kaban and Giro-
lami [3] considered this problem by modeling the
expectation parameter as a nonlinear function that
asymptotically reaches the value of zero.
In this work, we propose to incorporate the Zero
Inflated Poisson (ZIP) scheme in GTM to visualize
data documents in a plane. As Poisson process fails
when there are too many zeros, in the ZIP regres-
sion model the data are considered as generated
from a distribution with 0 with some probability p
and Poisson(λ) with probability 1− p. A mixture
model for the latent variables is assumed, and the
ZIP scheme for the generative process.

2 ZIP and count data models.

In the bag of words document representation, a
document is considered as an element of a vector
space. The document set is represented as a
term-document matrix T , where an element of the
matrix can be represented as tnj , indicating the
occurrence times of the word j in the document n.
In order to reduce the notation, from now on, we
will use tn when referring the nth row of matrix T,
and tj for jth column. We consider the complete
vocabulary set of a document after preprocessing
(stemming or stop words elimination) of D dimen-
sion. We will also assume that the term document
matrix T has many elements with zero count,
because not all the words are present in all the
documents.

Count data processes have been studied in many
statistics applications, Kaban and Girolami [3] con-
sidered it for document visualization. They ob-
tained an accurate representational structure for
text document data using the exponential family of
distributions, except for Poisson distribution. Con-
sidering the special handling of zero counts in ZIP
theory, we propose to use a probabilistic mixture



model of the latent classes along with ZIP.
For count data a Poisson model is commonly

used, Li [9] estimates the distribution of the docu-
ment vector using a Poisson mixture for document
classification and word clustering. Lambert [8] pro-
poses a careful modification of Poisson with the ZIP
model in an attempt to consider excess of zeroes.
She assumes that with probability p the observation
is 0, and with probability 1 − p a Poisson process.
The ZIP regression model for the multivariate case
with the data count variable tnj can be represented
as:

tnj = 0 with probability
pnj + (1 − pnj)e

−λkj ,
= tnj with probability

(1 − pnj)
e
−λkj λ

tnj

kj

tnj !
.

where λkj is considered the mean of a subset of
k elements that includes elements from the column
tj , and pnj is the probability that tnj of having a
zero count. The latent representation is assumed
with a log link between λ and covariates w and the
logit link of pnj with the covariate γ:

log(λkj) =

M
∑

m=1

φkmwmj (1)

logit(pnj) = log
pnj

1 − pnj

= Gnjγj (2)

where wmj is a weight applied to the basis func-
tion φkm, evaluated on the latent variables. Wedel
[10] considered the log link for a regression model
of the explanatory variables, and assumed a mix-
ture of Poisson distributed variables model for the
observed frequencies. Assuming also a mixture of
K Poissons model, the model for nth row (Pn(tn)
can be considered as:

Pn(tn|w, γ) =

K
∑

k=1

αkpnk(tn|w, γ)

=

K
∑
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αk

(
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∏
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−λkj

D
∏

j=1

∀tnj >0

(1 − pnj)
e−λkj λ

tnj

kj

tnj !

)

(3)

Where αk is the mixture coefficient parameter.
Similar to GTM, the latent space is a grid X of
size K × L, with L = 2. After several tests with
several radial basis vector functions we decided to
use a sinh function of X as basis function with
parameter µm:

φkm = sinh(xt
kµm) (4)

where xk is the kth row.

3 General formulation of ZIP.

The log likelihood function of data considering (3)
is given as

ℓ =

N
∑

n=1

log

(

K
∑

k=1

p(tn|w, γ)θnk

)

where θnk is the latent prior, i.e. the probability
that tn belongs to class k, and evaluated using the
Bayes’ rule

θnk =
αkpn(tn|w, γ)

∑K

k=1
αkpn(tn|w, γ)

. (5)

For parameter estimation, we considered the EM
algorithm, formulating the Expectation step from
the relative likelihood as:

E(logL) =

N
∑

n=1

K
∑

k

θnk log (αkPn(tn|W, γ))

=

NKD
∑

n,k,j

tnj=0

θnk log(eGnjγj + e−λkj )

−

NKD
∑

n,k,j

tnj=0

θnk log(1 + eGnjγj )

−

N,K,D
∑

n,k,j

tnj>0

θnk log(1 + eGnjγj )

+

N,K,D
∑

n,k,j

tnj>0

θnk (tnj log(λkj) − λkj)

−

N,K,D
∑

n,k,j

tnj>0

θnk log(tnj !)

+

N,K,D
∑

n,k,j

θnk log(αk). (6)

The separation of the sum of exponentials in the
first term complicates the maximization of relative
likelihood, but the evaluation can be realized by
defining Znj = (1 + e−Gnjγj−λkj )−1 as in [8], then:

E(logLc) =

N,K,D
∑

n,k,j

θnkZnjGnjγj

−

N,K,D
∑

n,k,j

θnklog(1 + eGnjγj )

−

N,K,D
∑

n,k,j

θnk(1 − Znj) log(1 + eGnjγj )



+

N,K,D
∑

n,k,j

θnk(1 − Znj)
(

tnj log(λkj) − θnkλkj

)

−

N,K,D
∑

n,k,j

θnk(1 − Znj) log (tnj !)

+

N,K,D
∑

n,k,j

θnklog(αkj)

= θnkLc(γ; t, Z) + θnkLc(W ; t, Z)

−

N,K,D
∑
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θnk(1 − Znj) log(tnj !)

+

N,K,D
∑

n,k,j

θnklog(αkj). (7)

In the Maximization step, wmj , γj and αk are
estimated as follows;

M step for wmj : The maximization step is
implemented with the Iterative Reweighed Least
Square (IRLS) procedure [11]. Applying IRLS the
estimation is obtained by iterating

wnew
j′ = wold

j′

+H−1φT (θT Ctj′ − AθT (1 − Zj′)),(8)

with

H = diag(−FT W )

W = BθT (1 − Zj′)

B = diag

(

λj′ (1 − e−λj′ (1 + λj′ ))

(1 − e−λj′ )2

)

Fj′ = diag(φj′φj)

A = diag

(

λj′

1 − e−λj′

)

C = diag(1 − Zj′).

H , B, A y C are diagonal matrices and F is a
K × D matrix. λj′ , zj′ , Fj′ and φj′ are the j′th
column of λ, Z, F and φ respectively.

M step for γj′ : this parameter is estimated us-
ing logistic regression [12], taking the first and sec-
ond derivatives:

γnew
j′ = γold

j′

+(−GT
j′WGj′ )

−1(GT
j′ (AB − CB))(9)

W = FE

Ann = Znj′

Fnn = pnj′ (1 − pnj′)

B = θI

Enn =

K
∑

k=1

θnk

Cnn = pnj′

F , E, A, W and C are diagonal matrices, I is a
vector of K × 1 ones and B is a N × 1 vector.

M step for αk: as the sum of all αk must
be one, we maximize (7) with respect to αk

as an augmented function
∑N,K,D

n,k,j θnklogαk −

µ
(

∑K

k αk − 1
)

, where µ is a Lagrangian multi-

plier. The parameter actualization is given as

αnew
k =

N
∑

n

θnk

N
(10)

The algorithm begins initializing the parameters,
then iterating until convergence.

• Initialization

– X = random

– µ = lines of sequence points

– G = random

– γ = random

– w = random

– αk = 1/K

– Compute φkm from (4)

• Iterate until convergence

– E step:

∗ Compute θ from (5)

– M step: parameter update

∗ Compute wnew from (8)

∗ Compute γnew from (9)

∗ Compute αnew from (10)

4 Performance evaluation.

In this section, we present the experimental results
for data visualization. The simulations were done
using three data collections:

• 200 documents extracted from Medlars collec-
tions (1033 medical abstracts),

• 200 documents extracted from CISI collections
(1460 science abstracts),

• 200 documents extracted from Cranfield col-
lections (1398 aerodynamics abstracts).



Figure 1: Data visualization of Medlars (-), CISI
(o) and Cranfield (x) collection. With uniform grid
latent variables and Gaussian RBF functions.

Before applying the algorithm, we have to per-
form a preprocessing task, where the first goal is to
consider only the words with sense. It was neces-
sary to remove the stop-words and use all words in
their root form, by performing stemming [14]. Each
document of the 600 was transformed in a vector by
removing the stop words and applying the Porter’s
stemming algorithm[13]. The final data set con-
tained 1,173 unique terms. Beside that, we selected
some words in the dictionary in order to reduce
the amount of computation. We use the resolving
power of significant words [14] as a term selection
method. The ”resolving power” takes the words in
the middle frequency range, which are supposed to
be the relevant items. Experiments were done us-
ing a dictionary size of 329 terms, therefore the size
of our term-document matrix T is 600 × 329.

4.1 Experimental results.

Experiments were done considering a uniform grid
of 270 latent variables (X) and 25 basis function
parameters (µ). Results are presented in Fig. 1.
Separation efficiency is highly dependent on latent
variables and basis function parameter initializa-
tion. After several tests with different basis func-
tions, we noticed a better class separation with hy-
perbolic sin function. In Fig. 2 results are pre-
sented for sinh. A random sampling strategy was
also considered for the latent variables distribution.
Fig. 3 shows the results when a random sampling
(Gaussian distribution for µ = 0 and σ = 1) of
the grid is used to select the latent variables. From
Fig. 3 we observe the Cranfield class closer to Med-
lars, and at the right side some Cranfield elements
appearing close to those from CISI.

Figure 2: Data visualization of Medlars (-), CISI
(o) and Cranfield (x) collection. With uniform grid
latent variables and sinh basis function.

Figure 3: Data visualization of Medlars (-), CISI
(o) and Cranfield (x) collection. With randomly
selected latent variables and sinh basis function.

5 Conclusions.

A mixture model for data visualization is presented,
the special zero accounting by ZIP is implemented
in the vector space representation for text. The
influence of latent space and basis functions is ob-
served. Using the ZIP representation, a notable
class separation is observed on the latent variables.
The best results were obtained with the sinh basis
function.
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